# **BRIO TurnStile**

# МОДУЛЬ УПРАВЛЕНИЯ ТУРНИКЕТАМИ





BRIO TurnStile ТЕХНИЧЕСКОЕ РУКОВОДСТВО.

BRIO EngineerinG, 2010, Рига, Латвия. www.brio.com.lv



Модуль BRIO Turnstile предназначен для управления турникетами при их работе в составе пропускной системы с использованием штрих кодов.

- Полная программная и аппаратная совместимость с торговыми компьютерными системами ShoppinG-IV, ACTIVE POS.
- Два канала RS-232 с гальванической развязкой для сканнеров штрихкодов.
- Два канала датчиков срабатывания турникета с гальванической развязкой.
- Встроенный контроль климата.
- Работа по протоколу ТСР/IР
- Любые типы штрих-кодов.
- Удаленное программирование и диагностика.

© BRIO EngineerinG 2010. Авторские права защищены. BRIO EngineerinG, ZRF BRIO, логотип BRIO EngineerinG, ShoppinG<sup>TM</sup>, BRIO TurnStile<sup>TM</sup>, BRIO ACTIVE POS<sup>TM</sup>, являются зарегистрированными торговыми марками фирмы SIA "ZRF BRIO".

# Оглавление

| 1. ОБЩИЙ ПРИНЦИП РАБОТЫ                  | 4  |
|------------------------------------------|----|
| 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ            |    |
| 3. ТЕХНИЧЕСКОЕ ОПИСАНИЕ МОДУЛЯ           | 6  |
| 3.1. РАЗЪЕМЫ, ПЕРЕМЫЧКИ, ИНДИКАЦИЯ       | 6  |
| 3.2. КОНТАКТЫ РАЗЪЕМОВ                   | 8  |
| 3.3. ИСПОЛЬЗОВАНИЕ КОНТРОЛЯ КЛИМАТА      | 10 |
| 3.4. ПОДКЛЮЧЕНИЕ СКАННЕРОВ ШТРИХ-КОДОВ   | 12 |
| 3.5. ПОДКЛЮЧЕНИЕ ТУРНИКЕТОВ              | 14 |
| 3.5.1. УПРАВЛЕНИЯ ОТКРЫТИЕМ ТУРНИКЕТА    | 14 |
| 3.5.2. ПОДКЛЮЧЕНИЕ ДАТЧИКОВ СРАБАТЫВАНИЯ |    |
| 3.5.3. БЛОК ПИТАНИЯ И ЗАЗЕМЛЕНИЕ         | 18 |
| 4. ПРОГРАММА TURNSTILE CONSOL            | 19 |
| 5. ПРИМЕР РЕАЛИЗАЦИИ В ACTIVe POS        | 22 |
| 5.1. АЛГОРИТМ РАБОТЫ                     | 22 |
| 5.2. СТРУКТУРА DBF ФАЙЛА                 | 23 |
| 5.3. ПРОГРАММА BRIO TurtstileService     | 24 |
| 6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ             | 26 |
| 7. ГАРАНТИИ BRIO EngineerinG®            | 27 |

# 1. ОБЩИЙ ПРИНЦИП РАБОТЫ

- Модуль **BRIO-Turnstile** устанавливается в корпусе турникета.
- Если есть необходимость в контроле температуры внутри корпуса турникета, то следует использовать версии модуля с контролем климата (BRIO Turnstile-XX-CL). В этом случае к модулю дополнительно подключаются отопитель и датчик температуры.
- По локальной сети модуль соединяется с компьютером, на котором установлено пользовательское программное обеспечение.



- Для программирования, настройки и диагностики модуля используется программа BRIO Turnstile Console, которая связывается с модулем, по компьютерной сети.
- Типовой алгоритм работы турникета с установленным модулем выглядит следующим образом:
  - Сканнер турникета считывает штрих код. (Билет, карточка и т.д.)
  - Модуль отправляет считанный штрих код и номер сканнера пользовательской программе, установленной на компьютере.
  - Проанализировав присланный штрих код, программа отправляет турникету команду открывать, или не открывать турникет в нужном направлении.
  - После срабатывания поворотного механизма турникета, модуль отправляет программе информацию о срабатывании.
- Контроль климата модуля, используя показания датчика температуры, включает, или выключает отопитель, поддерживая температуру в корпусе турникета в заданном диапазоне.

# 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Количество подключаемых сканнеров штрихкодов:
- До 2-х сканнеров с интерфейсом RS-232
- Программная совместимость:
- Торговые системы ShoppinG-IV.
- BRIO ACTIVE POS
- Количество каналов управления турникетом.
- Два канала управления с гальванической развязкой.
- Датчики срабатывания турникета.
- Два канала для датчиков:

  - Логической "1" уровня от +5 до +12V.■ Логическим "0" уровня от +5 до +12V.
  - Замыканием контактов.
  - Полная гальваническая развязка.
- Контроль климата. (BRIO Turnstile-xx-CL)
- Встроенная система контроля климата.
- Параметры подключения к Ethernet:
- 10/100 Base TX.
- Half/full duplex operation.
- Auto-negotiation.
- TCP/IP
- Ток потребления:
- 150 mA (Max!)
- Тип датчика температуры:
- BRIO-18B20-XX
- Рекомендуемые блоки питания:
- MeanWell RS-15-5 - MeanWell RS-25-12

Исполнение:

- Для внутренних помещений.
- Типы подключаемых отопителей.
- BRIO-HT-100W-12V(5V)-AC-240V - Cirrus-40/1-100W-12V(5V)-AC-240V
- Версии модулей:
  - BRIO Turnstile-5 BRIO Turnstile-5-CL
- DC +5V, без контроля климата. - DC +5V, с контролем климата.
- BRIO Turnstile-12 BRIO Turnstile-12-CL
- DC +12V, без контроля климата. - DC +12V, с контролем климата.

# 3. ТЕХНИЧЕСКОЕ ОПИСАНИЕ МОДУЛЯ

# 3.1. РАЗЪЕМЫ, ПЕРЕМЫЧКИ, ИНДИКАЦИЯ



ВНИМАНИЕ!!! Группа компонентов, отмеченная красным цветом, может отсутствовать в версиях модулей, не использующих контроль климата.

ВНИМАНИЕ!!! Группа компонентов, отмеченная <u>синим цветом</u>, отсутствует в версиях модулей использующих напряжение питания VPP = +5V. При этом перемычка +5V должна быть замкнута.

- 1/2 RS-232 Разъемы интерфейса RS-232 для подключения сканнеров штрих кодов.
- **J3** Если перемычка замкнута, то на 9-й контакт разъема 1-RS232 будет подано напряжение VPP.
- **J4** Если перемычка замкнута, то 9-й контакт разъема 1-RS232 будет соеденент с 9-м контактом разъема 2-RS232.

 DSR-CTS Состояние перемычек определяет, какой из сигналов (DSR

или CTS) поступающих со сканнера интерфейса RS-232 будет использоваться модулем для

определения готовности сканнера.

POWER Разъем для подключения блока питания. Напряжение

питания (+5 или +12V) определяется версией модуля.

 [ON/OFF] Индикация включения.

Выходные контакты оптореле для открытия турникета в OUT-AB

направлении АВ (ВА). OUT-BA

Индикация срабатывания оптореле в направлении АВ [ON-AB]

(BA). [ON-BA]

Гальванически развязанный INP-AB интерфейс датчиков

срабатывания турникета в направлении АВ (ВА). • INP-BA

INP-AB(BA) Выбор активного уровня входного сигнала с датчиков L - H

срабатывания турникета.

**L** – Логический "0" **H** – Логическая "1"

• EXT. DC Разъем подачи внешнего напряжения DC +5V на

интерфейс датчиков проворачивания турникета.

Выбор способа подачи напряжения DC +5V на интерфейс DC +5V INT-EXT датчиков проворачивания турникета.

**EXT** - Внешнее с разъема **EXT**. **DC** 

**INT** - С внутреннего источника питания.

Сброс всех настоек модуля в значения "по умолчанию". RESET

 [SET] Индикация режимов работы модуля:

> ФФФФ...(Частое мигание) Параметры модуля установлены "по умолчанию".

> Ф\_Ф № Ф ...(Редкое мигание) - Параметры модуля отличаются от значений "по умолчанию".

> может доступиться до сервера.

> ☆☆☆☆\_☆--☆\_...(Четырехкратное и длинное) – Сервер отказал в разрешении на открытие турникета.

• **FAN-HT** Разъем для подключения вентилятора отопителя.

• [ON-HT] Индикация включения отопителя.

• AC 220V Входное напряжения AC 220V для питания отопителя

• **HEATER** Разъем для подключения нагревателя отопителя. Выход

защищен электронным предохранителем.

• T-Sens Разъем для подключения датчика температуры BRIO-

18B20.

• ETHERNET Разъем для подключения к локальной сети.

# 3.2. КОНТАКТЫ РАЗЪЕМОВ

#### ИНТЕРФЕЙС RS-232C

| Конт. | Название | Направ. | Назначение сигнала              |
|-------|----------|---------|---------------------------------|
| 1     | P.GND    |         | Заземление                      |
| 2     | RxD      | Вход    | Прием данных                    |
| 3     | TxD      | Выход   | Передача данных                 |
| 4     | DTR      |         | Запрос готовности сканнера      |
| 5     | GND      |         | Общий                           |
| 6     | DSR      | Вход    | Готовность сканнера             |
| 7     | RTS      |         | Запрос готовности сканнера      |
| 8     | CTS      | Вход    | Готовность сканнера             |
| 9     | VPP      | Выход   | Напряжение питания +5V или +12V |

#### **РАЗЪЕМ OUT-AB**

| Конт. | Назв. | Направ. | Назначение сигнала                     |
|-------|-------|---------|----------------------------------------|
| 1     | K1.1  | Выход   | При срабатывании заворачивается с К1.2 |
| 2     | K1.2  | Выход   | При срабатывании заворачивается с К1.1 |

#### **РАЗЪЕМ ОИТ-ВА**

| Конт. | Назв. | Направ. | Назначение сигнала                     |
|-------|-------|---------|----------------------------------------|
| 1     | K2.1  | Выход   | При срабатывании заворачивается с К2.2 |
| 2     | K2.2  | Выход   | При срабатывании заворачивается с К2.1 |

## **PA3ЪEM POWER**

| Конт. | Назв. | Направ. | Назначение сигнала                 |
|-------|-------|---------|------------------------------------|
| 1     | GND   | Вход    | Общий провод.                      |
| 2     | VPP   | Вход    | Напряжение питания DC +5V или +12V |

## РАЗЪЕМ EXT. DC

| Конт. | Назв. | Направ. | Назначение сигнала                  |
|-------|-------|---------|-------------------------------------|
| 1     | +5V   | Вход    | Внешнее напряжение питания датчиков |
|       |       |         | срабатывания турникета.             |
| 2     | E.GND | Вход    | Внешний общий провод.               |

# ИНТЕРФЕЙС INP-AB (BA)

| Конт. | Назв. | Направ. | Назначение сигнала                   |
|-------|-------|---------|--------------------------------------|
| 1     | INP   | Вход    | Сигнал срабатывания турникета (TTL). |
| 2     | E.GND | Вход    | Внешний общий провод.                |

# ИНТЕРФЕЙС T.Sens

| Конт. | Назв. | Направ. | Назначение сигнала              |
|-------|-------|---------|---------------------------------|
| 1     | +5V   | Выход   | Питание для датчика температуры |
| 2     | DQ    | Вход    | Данные с датчика.               |
| 3     | GND   | Выход   | Общий провод.                   |

#### **РАЗЪЕМ FAN-HT**

| Конт. | Назв.   | Направ. | Назначение сигнала              |
|-------|---------|---------|---------------------------------|
| 1     | ON/OFF  | Выход   | Включение вентилятора.          |
| 2     | +5/+12V | Выход   | Напряжение питания вентилятора. |
| 3     | GND     | Выход   | Общий провод.                   |

# **РАЗЪЕМ AC 220V**

|   | Конт. | Назв. | Направ. | Назначение сигнала                |
|---|-------|-------|---------|-----------------------------------|
| ſ | 1     | AC    | Вход    | Входное напряжение для отопителя. |
|   | 2     | AC    | Вход    | Входное напряжение для отопителя. |

## **РАЗЪЕМ HEATER**

| ŀ | €ОНТ. | Назв. | Направ. | Назначение сигнала   |
|---|-------|-------|---------|----------------------|
|   | 1     | AC    | Выход   | Включение отопителя. |
|   | 2     | AC    | Выход   | Включение отопителя. |

# 3.3. ИСПОЛЬЗОВАНИЕ КОНТРОЛЯ КЛИМАТА

- Версии модуля с контроллером климата (XX-CL) могут контролировать температуру в корпусе турникета и при необходимости включать отопитель.
- Для активации этой функции следует при настройке модуля установить параметр Climat control в состояние enable.



Контроллер считывает показания с датчика температуры, подключенного к разъему T-Sens.



В зависимости от значения измеренной температуры (Current Temperature) и запрограммированных температурных порогов (Max. Temperature <sup>0</sup>C и Min. Temperature <sup>0</sup>C) модуль включает или выключает нагревательный элемент и вентилятор отопителя.

ВНИМАНИЕ!!! Так как для питания вентилятора отопителя используется общее питание модуля, то в зависимости от версии модуля (+5V или +12V), следует использовать отопитель с вентилятором, рассчитанным на такое же напряжение питания.

## ДАТЧИК ТЕМПЕРАТУРЫ BRIO-18B20-XX



- В свободной части трубки датчика можно проделать отверстие для удобства закрепления датчика в корпусе турникета.
- В корпусе турникета датчик следует закрепить в месте, наиболее критичном к переохлаждению.

# 3.4. ПОДКЛЮЧЕНИЕ СКАННЕРОВ ШТРИХ-КОДОВ

- К модулю можно подключить различные сканнеры штрих-кодов имеющие интерфейс RS-232C.
- Во многих сканнерах предусмотрена возможность подачи на них напряжения питания через 9-й контакт стандартного разъема.
- Различные версии модуля предусматривают возможность подключения сканнеров с различным напряжением питания. При этом питание сканеров можно осуществлять как с модуля, так и от отдельного блока питания сканера.
- Для удобства установки напряжение питания сканнеров должно совпадать с напряжение питания используемой версии модуля.

<u>ВАРИАНТ 1.</u> Напряжение питания версии модуля и сканнеров = **DC +5V**. Кабель сканнеров сделан так, что **на 9-й контакт можно** подавать напряжение питания. Перемычки **J3** и **J4** должны быть замкнуты.



<u>ВАРИАНТ 2.</u> Напряжение питания версии модуля и сканнеров - DC +12V. Кабель сканнеров сделан так, что на 9-й контакт можно подавать напряжение питания. Перемычки J3 и J4 должны быть замкнуты.



**ВАРИАНТ 3.** Кабель сканнеров не позволяет подавать напряжение питания на сканнер через **9-й контакт** разъема. Используются блоки питания самих сканнеров. Перемычки **J3** и **J4** могут быть в любом состоянии.



<u>ВАРИАНТ 4.</u> Напряжение питания версии модуля и напряжение питания сканнеров не совпадают. Кабель сканнеров сделан так, что на 9-й контакт выводиться напряжение питания сканнеров. Питание обоих сканнеров осуществляется своих блоков питания. Перемычки J3 и J4 обязательно должны быть удалены!



# 3.5. ПОДКЛЮЧЕНИЕ ТУРНИКЕТОВ

- Большинство турникетов имею приблизительно одинаковый интерфейс управления, сводящийся к следующему алгоритму:
  - Замыкание контактов AB открывание в направлении A -> B
  - Замыкание контактов ВА открывание в направлении В -> А
  - Размыкание контактов СС аварийное открытие в обе стороны.
  - Датчики срабатывания обычно отдельные для каждого направления и представляют собой устройства, выдающие положительные или отрицательные импульсы уровня TTL, или контакты на замыкание (размыкание).
- Модуль обеспечивает реализацию данного алгоритма работы турникета, и позволяет подключать различные типы датчиков срабатывания.
- Модуль так же обеспечивает полную гальваническую оптронную развязку цепей управления и датчиков.

#### 3.5.1. УПРАВЛЕНИЯ ОТКРЫТИЕМ ТУРНИКЕТА



- Контакты выходов управления OUT-AB и OUT-BA подключаются к соответствующим контактом интерфейса турникета.
- Индикация [ON-AB] и [ON-BA] на модуле будет светиться в момент замыкания контактов оптореле.
- Постоянно замкнутая клавиша аварийного открытия турникета АLARM! должна быть установлена отдельно, в доступном для опера-тора месте и подключена к соответствующим контактам турникета.

# 3.5.2. ПОДКЛЮЧЕНИЕ ДАТЧИКОВ СРАБАТЫВАНИЯ

ВАРИАНТ 1. Контакты датчиков работают на замыкание.



 Контакты выходов датчиков A-B(B-A) турникета подключаются ко входам INP-AB (BA) так, как показано на рисунке. Перемычки INP-AB (BA) должны быть установлены в положение L, а перемычка INT-EXT в положение INT.

ВАРИАНТ 2. Контакты датчиков работают на размыкание.



• Контакты выходов датчиков **A-B(B-A)** турникета подключаются ко входам **INP-AB (BA)** так, как показано на рисунке. Перемычки **INP-AB (BA)** должны быть установлены в положение **H**, а перемычка **INT-EXT** в положение **INT**.

**ВАРИАНТ 3.** Сигнал с датчиков выдается в виде положительного импульса, с уровнем от +5 до +12V.



• Контакты выходов датчиков **A-B(B-A)** турникета подключаются ко входам **INP-AB (BA)** так, как показано на рисунке. Перемычки **INP-AB (BA)** должны быть установлены в положение **H**, а перемычка **INT-EXT** в положение **INT**.

**ВАРИАНТ 4.** Сигнал с датчиков выдается в виде отрицательного импульса, с уровнем от +5 до +12V.



 Контакты выходов датчиков A-B(B-A) турникета подключаются ко входам INP-AB (BA) так, как показано на рисунке. Перемычки INP-AB (BA) должны быть установлены в положение L, а перемычка INT-EXT в положение INT. **ВАРИАНТ 4.** По какой либо причине, питание (От +5 до +12V) на интерфейс датчиков модуля нужно подавать с турникета.



• Контакты выходов датчиков A-B(B-A) турникета подключаются ко входам INP-AB (BA) так, как показано на рисунке. Перемычки INP-AB (BA) должны быть установлены в зависимости от сигнала на выходе датчиков турникета. Перемычка INT-EXT в положение EXT.

## 3.5.3. БЛОК ПИТАНИЯ И ЗАЗЕМЛЕНИЕ

 Рекомендуемые блоки питания – фирмы Meanwell соответствующего напряжения (+5V или +12V) и мощности, достаточной для питания модуля, вентилятора отопителя и сканнеров, если последние получают питание от модуля.



- Все силовые провода АС 220V должны быть разведены радиально.
  Т.е. подводиться к блоку питания и разъему АС 220V модуля по отдельности, непосредственно от входной колодки турникета так, как показано на рисунке.
- Провода защитного заземления так же должны быть разведены радиально и соединяться вместе только непосредственно на общей точке заземления, расположенной на корпусе, непосредственно у ввода силового кабеля.
- В непосредственной близости от места крепежа всех проводов защитного заземления должна быть наклеена этикетка .
- В непосредственной близости от места закрепления силовых проводов и разъемов, на контактах которых присутствует, или может появиться опасное напряжение, должна быть наклеена этикетка.

# 4. **TPOTPAMMA TURNSTILE CONSOL**

- Программа предназначена для программирования и сервисного обслуживания модуля BRIO TurnStile-XX-XX.
- В разделе на диске расположены файлы:
  - TurnstileConsole.exe Исполняемая программа.
  - TurnstileConsole.ini Файл инициализации.
  - **GGGGMMDD** turnstile.log Протокол работы программы.
- Содержимое файла инициализации TurnstileConsole.ini:

#### [Console]

:Console settings

;Emulation=0/1 - Закладку "Emulation" показывать (1) или нет (0).

;По умолчанию - не показывать.

Emulation=1

#### [Device.Default]

;Настройки параметров коммуникации устройства, которые ;устанавливаются при нажатии на кнопку "Set Default" в интерфейсе ;программы. При отсутствии **ini** - файла принимаются

;значения 192.168.10.200:11001)

lp=192.168.10.200

Port=11001

#### [Log]

:Logging settings

;Вести (1) или нет (0) протокол обмена. По умолчанию (0) - не вести.

#### Log=1

;LogCount = N -Сколько файлов с протоколом оставлять на диске.

;Протокол пишется в течении дня в один файл. Если дата меняется -

;заводится новый файл протокола. Чтобы эти файлы не скапливались,

;указывается сколько последних (по дате) файлов оставлять.

;Остальные, наиболее старые файлы - удаляются.

:По умолчанию = 1

# LogCount=1

;Log file prefix. Used to combine file name with current date to create :daily file name. Default: Turnstile

FileNamePrefix = TurnstileServer

• При отсутствии файла **TurnstileConsole.ini** программа будет использовать параметры "по умолчанию".



- Device to connect. Настройки для соединения с модулем.
  - **IP address –** Окно для ввода IP адреса модуля.
  - **Port** Окно для ввода номера порта модуля.
  - Set default Установить значение настроек из файла TurnstileConsole.ini, или, при его отсутствии по умолчанию.
  - **Name** Окно для ввода названия текущего набора параметров. Например - место установки данного турникета, или его номер.
  - Open Открыть файл с набором параметров.
  - Save As... Сохранить текущий набор параметров в файл.
- Version. Номер версии встроенной программы модуля.
  - Read Запросить у модуля номер версии программы.
- Device settings. Чтение, редактирование и запись в модуль его параметров для соединения.
  - IP address Окно для ввода IP адреса модуля.
  - Port Окно для ввода номера порта модуля.
  - Subnet mask Маска подсети.
  - Gateway Адрес основного шлюза.
  - MAC address Уникальный идентификатор устройства в сети.
  - Read Прочитать в модуле параметры коммуникации.
  - Write Записать в модуль новые параметры.

- Remote server settings. Чтение, редактирование и запись в модуль параметров сервера, с которым будет соединяться модуль.
  - **IP address –** Окно для ввода IP адреса сервера.
  - **Port** Окно для ввода номера порта сервера.
  - **Read** Прочитать в модуле текущие параметры сервера.
  - Write Записать в модуль новые параметры сервера.
- **Settings.** Чтение, редактирование и запись в модуль настроек для управления турникетом и климатом.
  - **Pulse length (NNx70mS)** Длительность импульса замыкания контактов разъемов OUT-AB(BA). Реальная длительность импульса равна выбранному значению, умноженному на 70mS.
  - Climat control enable Признак разрешающий, или запрещающий использование контроля климата.
  - Max. Temperature <sup>0</sup>C Измеренная датчиком температура, при которой отопитель будет выключаться.
  - **Min. Temperature** <sup>0</sup>**C** Измеренная датчиком температура, при которой отопитель будет включаться.
  - **Read** Прочитать в модуле текущие параметры управления.
  - **Write** Записать в модуль текущие параметры управления.
- **Control.** Тестирование модуля и турникета.
  - Current Temperature <sup>0</sup>C − Измеренная датчиком текущая температура. Если датчик отсутствует, то значение температуры будет равно 100.
  - **Read** Прочитать в модуле текущие значение температуры.
- Heater. Тестирование отопителя. Для использования этого режима следует отключить автоматический контроль климата (Climat control enable OFF).
  - **Turn on –** Включить отопитель.
  - Turn off Выключить отопитель.
- **Open gate.** Тестирование турникета, подключенного к модулю.
  - **A-B –** Открыть турникет в направлении A -> B.
    - В-А Открыть турникет в направлении В -> А.

# 5. ПРИМЕР РЕАЛИЗАЦИИ В ACTIVE POS 5.1. АЛГОРИТМ РАБОТЫ

- Модуль BRIO-Turnstile необходимой версии устанавливается и подключается в корпусе турникета.
- По локальной сети модуль соединяется с компьютером, на котором установлено пользовательское программное обеспечение.



- Алгоритм работы выглядит следующим образом:
  - BRIO ACTIVE POS продает и распечатывает клиенту билет, с нанесенным на него уникальным штрих-кодом, одновременно записывая данные о билете в файла **Ticket XX.DBF.**
  - Клиент, подойдя к турникету, подносит купленный билет к сканнеру штрих кода.
  - Сканнер считывает штрих код и, добавив к нему свой номер и другую служебную информацию, отправляет его на компьютер, на котором установлена серверная программа BRIO TurnstileService.
  - Проанализировав присланный штрих-код и сверив его со списком проданных билетов в файле Ticket\_XX.DBF, программа отправляет турникету команду – открывать, или не открывать турникет в нужном направлении.
  - После срабатывания поворотного механизма турникета, модуль отправляет программе информацию о пропуске клиента.
  - Программа BRIO TurnstileService делает отметку в файле Ticket\_XX.DBF об использовании билета и записывает, при необходимости, событие в протокол работы.
  - Если есть необходимость, то при помощи второго сканнера можно фиксировать факт прохода клиента в обратном направлении.

# 5.2. **СТРУКТУРА DBF** ФАЙЛА

• Тип используемого DBF файла - **Dbase 7 Paradox**.

- **ID** Автоматически наращиваемое поле типа **Integer**.
- **Check**, **string** Номер чека, по которому был продан билет.
- Sman, char Идентификатор продавца.
- TicketCode, char Номер билета.
- Price, float Цена билета.
- **GateInId, char** Идентификатор сканнера, через который был осуществлен вход. Тип данных может быть **int** или иметь другую длину.
- DateIn, datetime Дата/время, когда вошел
- GateOutId, char Идентификатор сканнера, через который был осуществлен выход. Тип данных может быть int или иметь другую длину.
- DateOut, datetime Дата/время, когда был осуществлен выход.
- Flags, int Если 0-й бит = 1, то билет заблокирован.

# 5.3. ПРОГРАММА BRIO TurtstileService

- Программа выполнена в виде сервиса и предназначена для обеспечения работы турникетов с модулем BRIO TurnStile-XX-XX в составе BRIO ACTive POS
- Для установки сервиса следует воспользоваться файлом Install.bat, а для удаления из системы - Uninstall.bat.
- Сервис по умолчанию работает как Local System. При необходимости **account** можно заменить через оснастку "Services"
- Control Panel. После установки используя Install.bat сервис запущен, тип запуска - автоматический.
- Для запуска/остановки сервиса можно воспользоваться оснасткой "Services" из control Panel или системной утилитой "sc" (командная строка: "sc start TurnstileServiceContainer", или "sc stop TurnstileServiceContainer").

ВНИМАНИЕ!!! Для работы сервиса необходимо наличие установленной BDE на компьютере, где работает сервис - т.к. он доступается к таблице DBase.

- В разделе на диске расположены файлы:
  - Install.bat Командный файл инсталляции.
  - Uninstall.bat Командный файл деинсталляции.
  - Turnstileservice.exe Файл инициализации.
  - TurnstileServer.ini Файл инициализации.
  - ReadMe\_TurnstileService.txt краткое описание.
- Содержимое файла инициализации TurnstileConsole.ini:

#### [Server]

:Server port to listen.

Port=11001

#### [ServerClient]

;Entry scanners identities. Comma separated list.

Entries=1

;Exit scanners identities. Comma separated list.

Exit=2

#### [Data]

;Tables list (comma separated) - file paths. Relative paths are allowed. Tables=..\FillDataBaseTable\Tickets\_12.dbf,..\FillDataBaseTable\Tickets\_13.dbf

# [Log]

;Logging settings

;Вести (1) или нет (0) протокол обмена. По умолчанию (0) - не вести.

# Log=1

;LogCount = N -Сколько файлов с протоколом оставлять на диске.

;Протокол пишется в течении дня в один файл. Если дата меняется — ;заводится новый файл протокола. Чтобы эти файлы не скапливались.

;указывается сколько последних (по дате) файлов оставлять.

;Остальные, наиболее старые файлы - удаляются.

;По умолчанию = 1

# LogCount=1

;Log file prefix. Used to combine file name with current date to create daily file name. Default: Turnstile

FileNamePrefix=TurnstileServer

# 6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- Специалисты по обслуживанию, монтажу и ремонту системы BRIO TurnStile должны пройти инструктаж по технике безопасности.
- К монтажу компонентов системы могут быть допущен только персонал, обладающий соответствующий группой допуска по электробезопасности.
- Запрещается эксплуатация компонентов системы BRIO TurnStile при снятых крышках.
- Перед монтажом компонентов системы BRIO TurnStile необходимо внимательно осмотреть кабели и убедиться в их исправности.
- Запрещается открывать крышки блоков компонентов системы BRIO TurnStile они включены, или если от них не отсоединены все кабели!!!
- Запрещается эксплуатация устройства при отсутствии в розетках AC 220V, и металлических частях элементов монтажа рабочего защитного заземления.
- Запрещается эксплуатация компонентов системы BRIO TurnStile при наличии повреждений силовых кабелей либо сигнальных проводов.
- Условия использования программной части системы оговорены в лицензионном соглашении на соотвествующее программное обеспечение.

# 7. ГАРАНТИИ BRIO EngineerinG®

SIA «ZRF BRIO» (BRIO EngineerinG®) гарантирует исправную работу компонентов системы BRIO TurnStile, в течении одного года со дня продажи. В течении гарантийного срока BRIO EngineerinG® обязуется произвести ремонт или замену компонентов системы BRIO TurnStile бесплатно.

Гарантийные обязательства распространяются только на компоненты системы BRIO TurnStile приобретенные у официальных дилеров SIA ZRF BRIO .

Гарантийные обязательства не распространяются на устройства, которые подверглись воздействию высокой температуры, электрического или других полей, агрессивных химических сред, либо вышли из строя в результате механических повреждений, или неаккуратного обращения с ними.

SIA ZRF BRIO (BRIO EngineerinG™) не несет ответственности за неправильную работу устройства в случае установки его сторонними фирмами, не являющимися официальными представителями SIA «ZRF BRIO»

Дополнительную информацию о продлении действия гарантийных обязательств можно получить в любом из представительств SIA ZRF BRIO (BRIO EngineerinG®)

Настоящие гарантийные обязательства утрачивают силу, если в договоре на поставку конкретной системы, либо системы, в состав которой входит устройство, оговорены иные условия.