

МОДУЛЬ УПРАВЛЕНИЯ ТУРНИКЕТАМИ

BRIO TurnStile ТЕХНИЧЕСКОЕ РУКОВОДСТВО.

BRIO EngineerinG, 2010, Рига, Латвия. www.brio.com.lv CE

Модуль BRIO Turnstile предназначен для управления турникетами при их работе в составе пропускной системы с использованием штрих кодов.

- Полная программная и аппаратная совместимость с торговыми компьютерными системами ShoppinG-IV, ACTIVe POS.
- Два канала RS-232 с гальванической развязкой для сканнеров штрихкодов.
- Два канала датчиков срабатывания турникета с гальванической развязкой.
- Встроенный контроль климата.
- Работа по протоколу ТСР/ІР
- Любые типы штрих-кодов.
- Удаленное программирование и диагностика.

© BRIO EngineerinG 2010. Авторские права защищены. BRIO EngineerinG, ZRF BRIO, логотип BRIO EngineerinG, ShoppinG[™], BRIO TurnStile[™], BRIO ACTIVE POS[™], являются зарегистрированными торговыми марками фирмы SIA "ZRF BRIO".

Оглавление

1. ОБЩИЙ ПРИНЦИП РАБОТЫ	4
2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	5
3. ТЕХНИЧЕСКОЕ ОПИСАНИЕ МОДУЛЯ	6
3.1. РАЗЪЕМЫ, ПЕРЕМЫЧКИ, ИНДИКАЦИЯ	6
3.2. КОНТАКТЫ РАЗЪЕМОВ	8
3.3. ИСПОЛЬЗОВАНИЕ КОНТРОЛЯ КЛИМАТА	10
3.4. ПОДКЛЮЧЕНИЕ СКАННЕРОВ ШТРИХ-КОДОЕ	312
3.5. ПОДКЛЮЧЕНИЕ ТУРНИКЕТОВ	14
3.5.1. УПРАВЛЕНИЯ ОТКРЫТИЕМ ТУРНИКЕТА	14
3.5.2. ПОДКЛЮЧЕНИЕ ДАТЧИКОВ СРАБАТЫВАНИЯ	15
3.5.3. БЛОК ПИТАНИЯ И ЗАЗЕМЛЕНИЕ	
4. ПРОГРАММА TURNSTILE CONSOL	19
5. ПРИМЕР РЕАЛИЗАЦИИ В ACTIVE POS	22
5.1. АЛГОРИТМ РАБОТЫ	22
5.2. СТРУКТУРА DBF ФАЙЛА	23
5.3. ПРОГРАММА BRIO TurtstileService	24
6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	26
7. ГАРАНТИИ BRIO EngineerinG®	27

1. ОБЩИЙ ПРИНЦИП РАБОТЫ

- Модуль **BRIO-Turnstile** устанавливается в корпусе турникета.
- Если есть необходимость в контроле температуры внутри корпуса турникета, то следует использовать версии модуля с контролем климата (BRIO Turnstile-XX-CL). В этом случае к модулю дополнительно подключаются отопитель и датчик температуры.
- По локальной сети модуль соединяется с компьютером, на котором установлено пользовательское программное обеспечение.

- Для программирования, настройки и диагностики модуля используется программа BRIO Turnstile Console, которая связывается с модулем, по компьютерной сети.
- Типовой алгоритм работы турникета с установленным модулем выглядит следующим образом:
 - Сканнер турникета считывает штрих код. (Билет, карточка и т.д.)
 - Модуль отправляет считанный штрих код и номер сканнера пользовательской программе, установленной на компьютере.
 - Проанализировав присланный штрих код, программа отправляет турникету команду – открывать, или не открывать турникет в нужном направлении.
 - После срабатывания поворотного механизма турникета, модуль отправляет программе информацию о срабатывании.
- Контроль климата модуля, используя показания датчика температуры, включает, или выключает отопитель, поддерживая температуру в корпусе турникета в заданном диапазоне.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Количество подключаемых сканнеров штрихкодов:
- Программная совместимость:
- Количество каналов управления турникетом.
- Датчики срабатывания турникета.

- До 2-х сканнеров с интерфейсом RS-232
- Торговые системы ShoppinG-IV.
- BRIO ACTIVe POS
- Два канала управления с гальванической развязкой.
- Два канала для датчиков:
 - Логической "1" уровня от +5 до +12V.
 Логическим "0" уровня от +5 до +12V.

 - Замыканием контактов.
 - Полная гальваническая развязка.
- Контроль климата. (BRIO Turnstile-xx-CL)
- Параметры подключения к Ethernet:
- Ток потребления: •
- Тип датчика температуры:
- Рекомендуемые блоки питания:
- Исполнение:
- Типы подключаемых • отопителей.
- Версии модулей: BRIO Turnstile-5 BRIO Turnstile-5-CL BRIO Turnstile-12 BRIO Turnstile-12-CL

- Встроенная система контроля климата.
- 10/100 Base TX.
- Half/full duplex operation.
- Auto-negotiation.
- TCP/IP
- 150 mA (Max!)
- BRIO-18B20-XX
- MeanWell RS-15-5
- MeanWell RS-25-12
- Для внутренних помещений.
- BRIO-HT-100W-12V(5V)-AC-240V
- Cirrus-40/1-100W-12V(5V)-AC-240V
- DC +5V, без контроля климата.
- DC +5V, с контролем климата.
- DC +12V, без контроля климата.
- DC +12V, с контролем климата.

ВНИМАНИЕ!!! Группа компонентов, отмеченная <u>красным цветом</u>, может отсутствовать в версиях модулей, не использующих контроль климата.

ВНИМАНИЕ!!! Группа компонентов, отмеченная <u>синим цветом</u>, отсутствует в версиях модулей использующих напряжение питания <u>VPP = +5V</u>. При этом перемычка <mark>+5V</mark> должна быть замкнута.

- 1/2 RS-232 Разъемы интерфейса RS-232 для подключения сканнеров штрих кодов.
- J3 Если перемычка замкнута, то на 9-й контакт разъема 1-RS232 будет подано напряжение VPP.
- J4 Если перемычка замкнута, то 9-й контакт разъема 1-RS232 будет соеденент с 9-м контактом разъема 2-RS232.

ТЕХНИЧЕСКОЕ РУКОВОДСТВО

- DSR-CTS Состояние перемычек определяет, какой из сигналов (DSR или CTS) поступающих со сканнера на разъемы интерфейса RS-232 будет использоваться модулем для определения готовности сканнера.
- **POWER** Разъем для подключения блока питания. Напряжение питания (+5 или +12V) определяется версией модуля.
- [ON/OFF] Индикация включения.
- OUT-AB Выходные контакты оптореле для открытия турникета в направлении AB (BA).
- [ON-AB] Индикация срабатывания оптореле в направлении AB • [ON-BA] (BA).
- INP-AB Гальванически развязанный интерфейс датчиков • INP-BA срабатывания турникета в направлении AB (BA).
- INP-AB(BA) Выбор активного уровня входного сигнала с датчиков срабатывания турникета. L - Н Срабатывания турникета. L – Логический "0"
 - Н Логическая "1"
- EXT. DC Разъем подачи внешнего напряжения DC +5V на интерфейс датчиков проворачивания турникета.
- DC +5V Выбор способа подачи напряжения DC +5V на интерфейс датчиков проворачивания турникета. EXT - Внешнее с разъема EXT. DC INT - С внутреннего источника питания.
- RESET Сброс всех настоек модуля в значения "по умолчанию".
- [SET] Индикация режимов работы модуля:

☆☆☆☆...(Частое мигание) - Параметры модуля установлены "по умолчанию".
☆ ☆ ☆...(Редкое мигание) - Параметры модуля

Ф_Ф_Ф_Ф_Кое мигание) - Параметры модуля отличаются от значений "по умолчанию".

☆☆☆☆_☆☆☆☆ _...(Четырехкратное с паузой) – Модуль не может доступиться до сервера.

☆☆☆☆_☆--☆_...(Четырехкратное и длинное) – Сервер отказал в разрешении на открытие турникета.

- FAN-HT Разъем для подключения вентилятора отопителя.
- [ON-HT] Индикация включения отопителя.
- AC 220V Входное напряжения AC 220V для питания отопителя
- HEATER Разъем для подключения нагревателя отопителя. Выход защищен электронным предохранителем.
- T-Sens Разъем для подключения датчика температуры BRIO-18B20.
- ETHERNET Разъем для подключения к локальной сети.

3.2. КОНТАКТЫ РАЗЪЕМОВ

ИНТЕРФЕЙС RS-232С

Конт.	Название	Направ.	Назначение сигнала
1	P.GND		Заземление
2	2 RxD Вход		Прием данных
3	TxD	Выход	Передача данных
4	DTR		Запрос готовности сканнера
5	GND		Общий
6	DSR	Вход	Готовность сканнера
7	RTS		Запрос готовности сканнера
8	CTS	Вход	Готовность сканнера
9	VPP	Выход	Напряжение питания +5V или +12V

РАЗЪЕМ OUT-AB

Конт.	Назв.	Направ.	Назначение сигнала			
1	K1.1	Выход	При срабатывании заворачивается с К1.2			
2	K1.2	Выход	При срабатывании заворачивается с К1.1			

РАЗЪЕМ OUT-BA

Конт.	Назв.	Направ.	Назначение сигнала			
1	K2.1	Выход	При срабатывании заворачивается с К2.2			
2	K2.2	Выход	При срабатывании заворачивается с К2.1			

PA3DEM POWER

Конт.	Назв.	Направ.	Назначение сигнала		
1	GND	Вход	Общий провод.		
2	VPP	Вход	Напряжение питания DC +5V или +12V		

РАЗЪЕМ EXT. DC

Конт.	Назв.	Направ.	Назначение сигнала
1	+5V	Вход	Внешнее напряжение питания датчиков
			срабатывания турникета.
2	E.GND	Вход	Внешний общий провод.

ИНТЕРФЕЙС INP-АВ (ВА)

Конт.	Назв.	Направ.	Назначение сигнала
1	INP	Вход	Сигнал срабатывания турникета (TTL).
2	E.GND	Вход	Внешний общий провод.

ИНТЕРФЕЙС T.Sens

Конт.	Назв.	Направ.	Назначение сигнала		
1	+5V	Выход	Питание для датчика температуры		
2	DQ	Вход	Данные с датчика.		
3	GND	Выход	Общий провод.		

РАЗЪЕМ FAN-HT

Конт.	Назв.	Направ.	Назначение сигнала			
1	ON/OFF	Выход	Включение вентилятора.			
2	+5/+12V	Выход	Напряжение питания вентилятора.			
3	GND	Выход	Общий провод.			

РАЗЪЕМ АС 220V

Кон	IT.	Назв.	Направ.	Назначение сигнала		
1		AC	Вход	Входное напряжение для отопителя.		
2		AC	Вход	Входное напряжение для отопителя.		

PA3^TEM HEATER

Конт.	Назв.	Направ.	Назначение сигнала
1	AC	Выход	Включение отопителя.
2	AC	Выход	Включение отопителя.

3.3. ИСПОЛЬЗОВАНИЕ КОНТРОЛЯ КЛИМАТА

- Версии модуля с контроллером климата (XX-CL) могут контролировать температуру в корпусе турникета и при необходимости включать отопитель.
- Для активации этой функции следует при настройке модуля установить параметр Climat control в состояние enable.

 Контроллер считывает показания с датчика температуры, подключенного к разъему T-Sens.

 В зависимости от значения измеренной температуры (Current Temperature) и запрограммированных температурных порогов (Max. Temperature ⁰C и Min. Temperature ⁰C) модуль включает или выключает нагревательный элемент и вентилятор отопителя.

ВНИМАНИЕ!!! Так как для питания вентилятора отопителя используется общее питание модуля, то в зависимости от версии модуля (+5V или +12V), следует использовать отопитель с вентилятором, рассчитанным на такое же напряжение питания.

ДАТЧИК ТЕМПЕРАТУРЫ BRIO-18B20-XX

- В свободной части трубки датчика можно проделать отверстие для удобства закрепления датчика в корпусе турникета.
- В корпусе турникета датчик следует закрепить в месте, наиболее критичном к переохлаждению.

3.4. ПОДКЛЮЧЕНИЕ СКАННЕРОВ ШТРИХ-КОДОВ

- К модулю можно подключить различные сканнеры штрих-кодов имеющие интерфейс RS-232C.
- Во многих сканнерах предусмотрена возможность подачи на них напряжения питания через **9-й контакт** стандартного разъема.
- Различные версии модуля предусматривают возможность подключения сканнеров с различным напряжением питания. При этом питание сканеров можно осуществлять как с модуля, так и от отдельного блока питания сканера.
- Для удобства установки напряжение питания сканнеров должно совпадать с напряжение питания используемой версии модуля.

ВАРИАНТ 1. Напряжение питания версии модуля и сканнеров = **DC +5V**. Кабель сканнеров сделан так, что **на 9-й контакт можно** подавать напряжение питания. Перемычки **J3** и **J4** должны быть замкнуты.

ВАРИАНТ 2. Напряжение питания версии модуля и сканнеров - **DC +12V**. Кабель сканнеров сделан так, что **на 9-й контакт можно** подавать напряжение питания. Перемычки **J3** и **J4** должны быть замкнуты.

ВАРИАНТ 3. Кабель сканнеров не позволяет подавать напряжение питания на сканнер через **9-й контакт** разъема. Используются блоки питания самих сканнеров. Перемычки **J3** и **J4** могут быть в любом состоянии.

ВАРИАНТ 4. Напряжение питания версии модуля и напряжение питания сканнеров не совпадают. Кабель сканнеров сделан так, что на 9-й контакт выводиться напряжение питания сканнеров. Питание обоих сканнеров осуществляется своих блоков питания. Перемычки J3 и J4 обязательно должны быть удалены!

3.5. ПОДКЛЮЧЕНИЕ ТУРНИКЕТОВ

- Большинство турникетов имею приблизительно одинаковый интерфейс управления, сводящийся к следующему алгоритму:
 - Замыкание контактов AB открывание в направлении A -> В
 - Замыкание контактов ВА открывание в направлении В -> А
 - Размыкание контактов CC аварийное открытие в обе стороны.
 - Датчики срабатывания обычно отдельные для каждого направления и представляют собой устройства, выдающие положительные или отрицательные импульсы уровня TTL, или контакты на замыкание (размыкание).
- Модуль обеспечивает реализацию данного алгоритма работы турникета, и позволяет подключать различные типы датчиков срабатывания.
- Модуль так же обеспечивает полную гальваническую оптронную развязку цепей управления и датчиков.

3.5.1. УПРАВЛЕНИЯ ОТКРЫТИЕМ ТУРНИКЕТА

- Контакты выходов управления **ОUT-AB** и **OUT-BA** подключаются к соответствующим контактом интерфейса турникета.
- Индикация [ON-AB] и [ON-BA] на модуле будет светиться в момент замыкания контактов оптореле.
- Постоянно замкнутая клавиша аварийного открытия турникета ALARM! должна быть установлена отдельно, в доступном для оператора месте и подключена к соответствующим контактам турникета.

3.5.2. ПОДКЛЮЧЕНИЕ ДАТЧИКОВ СРАБАТЫВАНИЯ

ВАРИАНТ 1. Контакты датчиков работают на замыкание.

 Контакты выходов датчиков А-В(В-А) турникета подключаются ко входам INP-АВ (ВА) так, как показано на рисунке. Перемычки INP-АВ (ВА) должны быть установлены в положение L, а перемычка INT-EXT в положение INT.

ВАРИАНТ 2. Контакты датчиков работают на размыкание.

 Контакты выходов датчиков А-В(В-А) турникета подключаются ко входам INP-АВ (ВА) так, как показано на рисунке. Перемычки INP-АВ (ВА) должны быть установлены в положение H, а перемычка INT-EXT в положение INT. **ВАРИАНТ 3.** Сигнал с датчиков выдается в виде положительного импульса, с уровнем от +5 до +12V.

 Контакты выходов датчиков А-В(В-А) турникета подключаются ко входам INP-АВ (ВА) так, как показано на рисунке. Перемычки INP-АВ (ВА) должны быть установлены в положение H, а перемычка INT-EXT в положение INT.

ВАРИАНТ 4. Сигнал с датчиков выдается в виде отрицательного импульса, с уровнем от +5 до +12V.

 Контакты выходов датчиков А-В(В-А) турникета подключаются ко входам INP-АВ (ВА) так, как показано на рисунке. Перемычки INP-АВ (ВА) должны быть установлены в положение L, а перемычка INT-EXT в положение INT. ВАРИАНТ 4. По какой либо причине, питание (От +5 до +12V) на интерфейс датчиков модуля нужно подавать с турникета.

 Контакты выходов датчиков А-B(B-A) турникета подключаются ко входам INP-AB (BA) так, как показано на рисунке. Перемычки INP-AB (BA) должны быть установлены в зависимости от сигнала на выходе датчиков турникета. Перемычка INT-EXT в положение EXT.

3.5.3. БЛОК ПИТАНИЯ И ЗАЗЕМЛЕНИЕ

 Рекомендуемые блоки питания – фирмы Meanwell соответствующего напряжения (+5V или +12V) и мощности, достаточной для питания модуля, вентилятора отопителя и сканнеров, если последние получают питание от модуля.

- Все силовые провода AC 220V должны быть разведены радиально. Т.е. подводиться к блоку питания и разъему AC 220V модуля по отдельности, непосредственно от входной колодки турникета так, как показано на рисунке.
- Провода защитного заземления так же должны быть разведены радиально и соединяться вместе только непосредственно на общей точке заземления, расположенной на корпусе, непосредственно у ввода силового кабеля.
- В непосредственной близости от места крепежа всех проводов зашитного заземления должна быть наклеена этикетка
- В непосредственной близости от места закрепления силовых проводов и разъемов, на контактах которых присутствует, или может поя-

виться опасное напряжение, должна быть наклеена этикетка 💋

4. ПРОГРАММА TURNSTILE CONSOL

- Программа предназначена для программирования и сервисного обслуживания модуля **BRIO TurnStile-XX-XX**.
- В разделе на диске расположены файлы:
 - TurnstileConsole.exe Исполняемая программа.
 - TurnstileConsole.ini Файл инициализации.
 - GGGGMMDD_turnstile.log Протокол работы программы.
- Содержимое файла инициализации TurnstileConsole.ini:

[Console]

;Console settings ;Emulation=0/1 - Закладку "Emulation" показывать (1) или нет (0). ;По умолчанию - не показывать. Emulation=1

[Device.Default]

;Настройки параметров коммуникации устройства, которые ;устанавливаются при нажатии на кнопку "Set Default" в интерфейсе ;программы. При отсутствии ini - файла принимаются ;значения 192.168.10.200:11001) Ip=192.168.10.200 Port=11001

[Log]

;Logging settings ;Вести (1) или нет (0) протокол обмена. По умолчанию (0) - не вести. Log=1 ;LogCount = N -Сколько файлов с протоколом оставлять на диске. ;Протокол пишется в течении дня в один файл. Если дата меняется – ;заводится новый файл протокола. Чтобы эти файлы не скапливались, ;указывается сколько последних (по дате) файлов оставлять. ;Остальные, наиболее старые файлы - удаляются. ;По умолчанию = 1

LogCount=1

;Log file prefix. Used to combine file name with current date to create ;daily file name. Default: Turnstile **FileNamePrefix = TurnstileServer**

 При отсутствии файла TurnstileConsole.ini программа будет использовать параметры "по умолчанию".

BRIO TurnStile

🛔 BRIO TurnSt	ile Console				
Device to conn	ect				
IP address	192.168.10.200	Port 11001	Set default		
Name	Gate 15, Sector B, N	3	Open	Save As	
Configuration At	oout				
Version		Read	Remote server settings IP address Read	55.168.10.200	Port 110111
Device settings			Settings		
IP address	192.168.10.200	Port 11001	Pulse length (NNx70m)	s) [10	Bead
Subnet mask	000.064.202.138				
Gateway	192.168.10.001		Climat control enab	bled	Write
			Max temperature, °C	30	÷
MAC address	000.072.203.137		Min. temperature, °C	-5	÷
Rea	dWi	te	Control Current temperature, *C	C Heater Turn on Turn off	Open Gate A · B B · A

- Device to connect. Настройки для соединения с модулем.
 - **IP address –** Окно для ввода IP адреса модуля.
 - **Port** Окно для ввода номера порта модуля.
 - Set default Установить значение настроек из файла TurnstileConsole.ini, или, при его отсутствии по умолчанию.
 - Name Окно для ввода названия текущего набора параметров.
 Например место установки данного турникета, или его номер.
 - **Open** Открыть файл с набором параметров.
 - Save As...- Сохранить текущий набор параметров в файл.
 - Version. Номер версии встроенной программы модуля.
 - Read Запросить у модуля номер версии программы.
- **Device settings.** Чтение, редактирование и запись в модуль его параметров для соединения.
 - IP address Окно для ввода IP адреса модуля.
 - **Port** Окно для ввода номера порта модуля.
 - Subnet mask Маска подсети.
 - Gateway Адрес основного шлюза.
 - MAC address Уникальный идентификатор устройства в сети.
 - Read Прочитать в модуле параметры коммуникации.
 - Write Записать в модуль новые параметры.

- **Remote server settings.** Чтение, редактирование и запись в модуль параметров сервера, с которым будет соединяться модуль.
 - IP address Окно для ввода IP адреса сервера.
 - **Port** Окно для ввода номера порта сервера.
 - **Read** Прочитать в модуле текущие параметры сервера.
 - Write Записать в модуль новые параметры сервера.
- Settings. Чтение, редактирование и запись в модуль настроек для управления турникетом и климатом.
 - Pulse length (NNx70mS) Длительность импульса замыкания контактов разъемов ОUT-АВ(ВА). Реальная длительность импульса равна выбранному значению, умноженному на 70mS.
 - Climat control enable Признак разрешающий, или запрещающий использование контроля климата.
 - Max. Temperature ^⁰С Измеренная датчиком температура, при которой отопитель будет выключаться.
 - Min. Temperature ⁰Ć Измеренная датчиком температура, при которой отопитель будет включаться.
 - Read Прочитать в модуле текущие параметры управления.
 - Write Записать в модуль текущие параметры управления.
- **Control.** Тестирование модуля и турникета.
 - **Current Temperature** ⁰**C** Измеренная датчиком текущая температура. Если датчик отсутствует, то значение температуры будет равно 100.
 - Read Прочитать в модуле текущие значение температуры.
- Heater. Тестирование отопителя. Для использования этого режима следует отключить автоматический контроль климата (Climat control enable – OFF).
 - **Turn on –** Включить отопитель.
 - **Turn off –** Выключить отопитель.
- **Open gate.** Тестирование турникета, подключенного к модулю.
 - А-В Открыть турникет в направлении А -> В.
 - **В-А –** Открыть турникет в направлении В -> А.

5. ПРИМЕР РЕАЛИЗАЦИИ В АСТІVе POS 5.1. АЛГОРИТМ РАБОТЫ

- Модуль BRIO-Turnstile необходимой версии устанавливается и подключается в корпусе турникета.
- По локальной сети модуль соединяется с компьютером, на котором установлено пользовательское программное обеспечение.

- Алгоритм работы выглядит следующим образом:
 - BRIO ACTIVe POS продает и распечатывает клиенту билет, с нанесенным на него уникальным штрих-кодом, одновременно записывая данные о билете в файла Ticket_XX.DBF.
 - Клиент, подойдя к турникету, подносит купленный билет к сканнеру штрих кода.
 - Сканнер считывает штрих код и, добавив к нему свой номер и другую служебную информацию, отправляет его на компьютер, на котором установлена серверная программа BRIO TurnstileService.
 - Проанализировав присланный штрих-код и сверив его со списком проданных билетов в файле **Ticket_XX.DBF**, программа отправляет турникету команду открывать, или не открывать турникет в нужном направлении.
 - После срабатывания поворотного механизма турникета, модуль отправляет программе информацию о пропуске клиента.
 - Программа BRIO TurnstileService делает отметку в файле Ticket_XX.DBF об использовании билета и записывает, при необходимости, событие в протокол работы.
 - Если есть необходимость, то при помощи второго сканнера можно фиксировать факт прохода клиента в обратном направлении.

5.2. СТРУКТУРА DBF ФАЙЛА

• Тип используемого DBF файла - Dbase 7 Paradox.

```
TFieldStructure JournalHeadFields[] = {
    { "Id", ftAutoInc, 0 },
    { "Check", ftString, 10 },
    { "Sman", ftString, 20},
    { "TicketCode", ftString, 64 },
    { "Price", ftFloat, 0 },
    { "GateInId", ftString, 16},
    { "DateIn", ftDateTime, 0 },
    { "GateOutId", ftString, 16 },
    { "DateOut", ftDateTime, 0 },
    { "Flags", ftInteger, 0 }
```

};

- ID Автоматически наращиваемое поле типа Integer.
- Check, string Номер чека, по которому был продан билет.
- Sman, char Идентификатор продавца.
- TicketCode, char Номер билета.
- Price, float Цена билета.
- GateInid, char Идентификатор сканнера, через который был осуществлен вход. Тип данных может быть int или иметь другую длину.
- Dateln, datetime Дата/время, когда вошел
- GateOutId, char Идентификатор сканнера, через который был осуществлен выход. Тип данных может быть int или иметь другую длину.
- DateOut, datetime Дата/время, когда был осуществлен выход.
- Flags, int Если 0-й бит = 1, то билет заблокирован.

5.3. **ПРОГРАММА BRIO TurtstileService**

- Программа выполнена в виде сервиса и предназначена для обеспечения работы турникетов с модулем BRIO TurnStile-XX-XX в составе BRIO ACTIve POS
- Для установки сервиса следует воспользоваться файлом Install.bat, а для удаления из системы - Uninstall.bat.
- Сервис по умолчанию работает как Local System. При необходимости account можно заменить через оснастку "Services"
- **Control Panel.** После установки используя Install.bat сервис запущен, тип запуска автоматический.
- Для запуска/остановки сервиса можно воспользоваться оснасткой "Services" из control Panel или системной утилитой "sc" (командная строка: "sc start TurnstileServiceContainer", или "sc stop TurnstileServiceContainer").

ВНИМАНИЕ!!! Для работы сервиса необходимо наличие установленной BDE на компьютере, где работает сервис - т.к. он доступается к таблице DBase.

- В разделе на диске расположены файлы:
 - Install.bat Командный файл инсталляции.
 - Uninstall.bat Командный файл деинсталляции.
 - Turnstileservice.exe Файл инициализации.
 - TurnstileServer.ini Файл инициализации.
 - ReadMe_TurnstileService.txt краткое описание.
- Содержимое файла инициализации TurnstileConsole.ini:

[Server]

;Server port to listen. Port=11001

[ServerClient]

;Entry scanners identities. Comma separated list. Entries=1 ;Exit scanners identities. Comma separated list. Exit=2

[Data]

;Tables list (comma separated) - file paths. Relative paths are allowed. Tables=..\FillDataBaseTable\Tickets_12.dbf,..\FillDataBaseTable\Tickets_ 13.dbf

[Log]

;Logging settings

;Вести (1) или нет (0) протокол обмена. По умолчанию (0) - не вести. Log=1

;LogCount = N -Сколько файлов с протоколом оставлять на диске.

;Протокол пишется в течении дня в один файл. Если дата меняется – ;заводится новый файл протокола. Чтобы эти файлы не скапливались,

;указывается сколько последних (по дате) файлов оставлять. ;Остальные, наиболее старые файлы - удаляются. ;По умолчанию = 1 LogCount=1

;Log file prefix. Used to combine file name with current date to create daily file name. Default: Turnstile

FileNamePrefix=TurnstileServer

6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- Специалисты по обслуживанию, монтажу и ремонту системы BRIO TurnStile должны пройти инструктаж по технике безопасности.
- К монтажу компонентов системы могут быть допущен только персонал, обладающий соответствующий группой допуска по электробезопасности.
- Запрещается эксплуатация компонентов системы BRIO TurnStile при снятых крышках.
- Перед монтажом компонентов системы BRIO TurnStile необходимо внимательно осмотреть кабели и убедиться в их исправности.
- Запрещается открывать крышки блоков компонентов системы BRIO TurnStile они включены, или если от них не отсоединены все кабели!!!
- Запрещается эксплуатация устройства при отсутствии в розетках AC 220V, и металлических частях элементов монтажа рабочего защитного заземления.
- Запрещается эксплуатация компонентов системы BRIO TurnStile при наличии повреждений силовых кабелей либо сигнальных проводов.
- Условия использования программной части системы оговорены в лицензионном соглашении на соотвествующее программное обеспечение.

7. ГАРАНТИИ BRIO EngineerinG®

SIA «ZRF BRIO» (BRIO EngineerinG®) гарантирует исправную работу компонентов системы BRIO TurnStile, в течении одного года со дня продажи. В течении гарантийного срока BRIO EngineerinG® обязуется произвести ремонт или замену компонентов системы BRIO TurnStile бесплатно.

Гарантийные обязательства распространяются только на компоненты системы BRIO TurnStile приобретенные у официальных дилеров SIA ZRF BRIO.

Гарантийные обязательства не распространяются на устройства, которые подверглись воздействию высокой температуры, электрического или других полей, агрессивных химических сред, либо вышли из строя в результате механических повреждений, или неаккуратного обращения с ними.

SIA ZRF BRIO (BRIO EngineerinG™) не несет ответственности за неправильную работу устройства в случае установки его сторонними фирмами, не являющимися официальными представителями SIA «ZRF BRIO»

Дополнительную информацию о продлении действия гарантийных обязательств можно получить в любом из представительств SIA ZRF BRIO (BRIO EngineerinG®)

Настоящие гарантийные обязательства утрачивают силу, если в договоре на поставку конкретной системы, либо системы, в состав которой входит устройство, оговорены иные условия.